Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(6): e9704, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38356092

RESUMO

RATIONALE: The efficiency of selected ion monitoring (SIM) and selected reaction monitoring (SRM) analyses for the quantification of three mono-, di- and tri-unsaturated highly branched isoprenoid (HBI) alkenes (IP25 , IPSO25 and HBI III, respectively), often used as proxies for the occurrence of Arctic and Antarctic sea ice or the adjacent open waters, was compared. METHODS: Gas chromatography (GC)-mass spectrometry (MS)/SIM and GC/MS/MS/SRM analyses were carried out on dilute solutions made from purified standards of these three HBIs, and then on hydrocarbon fractions of several sediment and sea ice sample extracts. More efficient and specific SRM transitions were selected after collision-induced dissociation of each precursor ion at different collision energies. RESULTS: SRM analysis avoided any overestimation of IP25 resulting from the contribution of the coeluting 13 C mass isotopomer of IPSO25 (M+ ˙ + 2) to the SIM target ion. In contrast, SRM analysis is less reliable for IPSO25 quantification in cases where several regio-isomers are present, likely due to intense double bond migrations following electron impact. In the case of HBI III, SRM analysis constitutes a potentially suitable alternative to SIM analysis, especially in terms of improving limit of detection. CONCLUSIONS: Despite the intense migrations of HBI double bonds under electron ionization, the selected SRM transitions should be more suitable than SIM target ions for IP25 and HBI III quantification in complex hydrocarbon fractions of natural samples. However, the advantage is less evident for IPSO25 due to the presence of numerous regio-isomers.


Assuntos
Espectrometria de Massas em Tandem , Terpenos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Terpenos/análise , Alcenos/análise , Camada de Gelo , Biomarcadores/análise
2.
J Agric Food Chem ; 72(5): 2813-2825, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38263713

RESUMO

A head space-solid phase microextraction-gas chromatography-mass spectrometery (HS-SPME-GC-MS) method for the simultaneous analysis of pentene dimers from lipoxygenase (LOX) pathway, monoterpenes, and sesquiterpenes in extra virgin olive oil (EVOO) was proposed. A Doehlert design was performed; the conditions of the HS-SPME preconcentration step (extraction temperature, extraction time, sample amount, and desorption time) were optimized by response surface methodology, allowing defining the method operable design region. A quantitative method was set up using the multiple internal standard normalization approach: four internal standards were used, and the most suitable one was selected for area normalization of each external standard. The quantitative method was successfully validated and applied to a series of monocultivar EVOOs. This is the first paper in which a quantitative method using commercial standards has been proposed for the analysis of an important class of molecules of EVOO such as pentene dimers. The optimized method is suitable for routine analysis aimed at characterizing high quality EVOOs.


Assuntos
Terpenos , Compostos Orgânicos Voláteis , Azeite de Oliva/análise , Terpenos/análise , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Alcenos/análise , Compostos Orgânicos Voláteis/análise , Hidrocarbonetos
3.
J Chromatogr A ; 1713: 464569, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091845

RESUMO

In steam cracking, upstream pyrolysis oil hydroprocessing, and in many downstream processes, olefinic content is key to assess process performance and process safety risk associated with highly exothermic reactions. When looking to plastic pyrolysis oils as a potential feedstock, as well as downstream products such as pyrolysis gasoline (pygas), these materials contain unsaturated hydrocarbons which are not present in fossil feedstocks. Pygas is a product of pyrolysis and exhibits a large number of chemical structural similarities with plastic pyrolysis oils, especially in terms of olefins structure. Quantification of the unsaturation content (olefins and di-olefins) is extremely important in industry, hence the focus of this manuscript. Detailed hydrocarbon analysis with flame ionization detection is inadequate to fully characterize the hydrocarbon composition of such samples, especially when peaks are closely eluting, or even co-eluting. In this study, the gas chromatography coupled to vacuum ultraviolet (GC-VUV) detection method previously described for the analysis of liquid hydrocarbon streams1 and plastic pyrolysis oils2 has been compared with comprehensive gas chromatography (GC × GC) and the industry standard for olefin quantification (i.e., bromine number titration). Although based on different methodologies, a correlation between the olefin content obtained from GC-VUV and the bromine number titration method is hereby presented.


Assuntos
Alcenos , Gasolina , Gasolina/análise , Alcenos/análise , Bromo , Vácuo , Pirólise , Cromatografia Gasosa/métodos , Óleos/análise , Hidrocarbonetos/análise
4.
J Hazard Mater ; 459: 132159, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531759

RESUMO

Experimental evidence has demonstrated that neonicotinoids (NEOs) exposure can cause lipid accumulation and increased leptin levels. However, the relationship between NEOs exposure and dyslipidemia in humans remains unclear, and the interactive effects of NEOs and their characteristic metabolites on dyslipidemia remain unknown. We detected 14 NEOs and their metabolites in urine samples of 500 individuals (236 and 264 with and without dyslipidemia, respectively) randomly selected from the baseline of the Yinchuan community-dwelling elderly cohort (Ningxia, China). The NEOs and their metabolites were widely detected in urine (87.2-99.6 %) samples, and the median levels ranged within 0.06-0.55 µg/g creatinine. The positive associations and dose-dependent relationships of thiacloprid, imidacloprid-olefin, and imidacloprid-equivalent total with dyslipidemia were validated using restricted cubic spline analysis. Mixture models revealed a positive association between the NEOs mixture and dyslipidemia risk, with urine desnitro-imidacloprid ranked as the top contributor. The Bayesian Kernel Machine Regression models showed that the NEOs mixtures were associated with increased dyslipidemia when the chemical mixtures were ≥ 25th percentile compared to their medians, and desnitro-imidacloprid and imidacloprid-olefin were the major contributors to the combined effect. Given the widespread use of NEOs and the dyslipidemia pandemic, further investigations are urgently needed to confirm our findings and elucidate the underlying mechanisms.


Assuntos
Dislipidemias , Inseticidas , Humanos , Idoso , Inseticidas/toxicidade , Inseticidas/análise , Estudos Transversais , Teorema de Bayes , População do Leste Asiático , Vida Independente , Neonicotinoides/toxicidade , Nitrocompostos , China/epidemiologia , Alcenos/análise , Dislipidemias/induzido quimicamente , Dislipidemias/epidemiologia
5.
Elife ; 122023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431891

RESUMO

Attracting and securing potential mating partners is of fundamental importance for reproduction. Therefore, signaling sexual attractiveness is expected to be tightly coordinated in communication systems synchronizing senders and receivers. Chemical signaling has permeated through all taxa of life as the earliest and most widespread form of communication and is particularly prevalent in insects. However, it has been notoriously difficult to decipher how exactly information related to sexual signaling is encoded in complex chemical profiles. Similarly, our knowledge of the genetic basis of sexual signaling is very limited and usually restricted to a few case studies with comparably simple pheromonal communication mechanisms. The present study jointly addresses these two knowledge gaps by characterizing two fatty acid synthase genes that most likely evolved by tandem gene duplication and that simultaneously impact sexual attractiveness and complex chemical surface profiles in parasitic wasps. Gene knockdown in female wasps dramatically reduces their sexual attractiveness coinciding with a drastic decrease in male courtship and copulation behavior. Concordantly, we found a striking shift of methyl-branching patterns in the female surface pheromonal compounds, which we subsequently demonstrate to be the main cause for the greatly reduced male mating response. Intriguingly, this suggests a potential coding mechanism for sexual attractiveness mediated by specific methyl-branching patterns in complex cuticular hydrocarbon (CHC) profiles. So far, the genetic underpinnings of methyl-branched CHCs are not well understood despite their high potential for encoding information. Our study sheds light on how biologically relevant information can be encoded in complex chemical profiles and on the genetic basis of sexual attractiveness.


Attracting a mate is critical in all species that sexually reproduce. Most animals, particularly insects, do this using chemical compounds called pheromones which can be sensed by potential mates. But how these vast range of different compounds encode and convey the information needed to secure a partner is not fully understood, and the genes that drive this complex communication mechanism are largely unknown. To address this knowledge gap, Sun et al. studied the parasitic wasp Nasonia vitripennis. Like other insects, female N. vitripennis contain a wide range of chemical compounds on their cuticle, the outer waxy layer coating their surface. Sun et al. set out to find exactly which of these compounds, known as cuticular hydrocarbons, are involved in sexual communication. They did this by simultaneously inactivating two related genes that they hypothesized to be responsible for synthesizing and maintaining chemical compounds on the cuticle of insects. The genetic modification altered the pattern of chemicals on the surface of the female wasps by specifically up- and down-regulating compounds with similar branching structures. The mutant females were also much less sexually attractive to male wasps. These findings suggest that the chemical pattern identified by Sun et al. is responsible for communicating and maintaining sexual attractiveness in N. vitripennis female wasps. This is a significant stepping stone towards unravelling how sexual attractiveness can be encoded in complex mixtures of pheromones. The results also have important implications for agriculture, as this parasitic wasp species is routinely used to exterminate particular fly populations that cause agricultural damage. The work by Sun et al. provides new insights into how these wasps sexually communicate, which may help scientists improve their rearing conditions and sustain them over multiple generations. This could contribute to a wider application of this more sustainable, eco-friendly alternative to destructive agricultural pesticides.


Assuntos
Vespas , Vespas/química , Vespas/genética , Vespas/fisiologia , Animais , Ácido Graxo Sintases/genética , Preferência de Acasalamento Animal , Masculino , Feminino , Técnicas de Silenciamento de Genes , Atrativos Sexuais/análise , Alcanos/análise , Alcenos/análise
6.
Environ Pollut ; 333: 122077, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343912

RESUMO

Vehicle exhaust and oil fuel evaporation emit volatile organic compounds (VOCs). The differences in VOC compositions and their effects determined using different methods have not been addressed sufficiently. In this study, VOC samples are obtained from single gasoline and diesel vehicle exhausts using a portable emission measurement system, from a tunnel in Yichang City, and from gasoline and diesel evaporation at gas stations. A total of 107 VOCs are analysed. The calculated VOC source profiles (based on VOC source profiles of single-vehicle type and vehicle fleet composition in the tunnel) and the tested source profiles (from a tunnel test) are compared. The results show that gasoline burning can reduce alkenes from a mass fraction of 53.1% (for evaporation) to 3.6% (for burning), as well as increase the mass fraction of alkenes from 1.3% (for diesel evaporation) to 34.0% (for diesel burning). The calculated VOC source profiles differed from the tested VOC source profiles, with a coefficient of divergence of 0.6. Ethane, ethylene, n-undecane, and n-dodecane are used to distinguish VOCs in gasoline and diesel exhausts. Cis-2-butene, 2-methylpentane, m/p-xylene, o-xylene, and n-decane can be used to separate gasoline from diesel. The xylene/ethylbenzene ratios accurately reveal the photochemical age. Gasoline burning increases health risks associated with VOCs compared with gasoline evaporation. Furthermore, it modifies the main contributor to ozone formation potential. This study is expected to facilitate refined VOC source apportionment and studies pertaining to speciated emission inventories.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Gasolina/análise , Ozônio/análise , Alcenos/análise , Monitoramento Ambiental , China
7.
Environ Sci Pollut Res Int ; 30(30): 75439-75453, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37219773

RESUMO

The concentration of ozone has been in a rising crescendo in the last decade while the fine particles (PM2.5) is gradually decreasing but still at a high level in central China. Volatile organic compounds (VOCs) are the vital precursors of ozone and PM2.5. A total of 101 VOC species were measured in four seasons at five sites from 2019 to 2021 in Kaifeng. VOC sources and geographic origin of sources were identified by the positive matrix factorization (PMF) model and the hybrid single-particle Lagrangian integrated trajectory transport model. The source-specific OH loss rates (LOH) and ozone formation potential (OFP) were calculated to estimate the effects of each VOC source. The average mixing ratios of total VOCs (TVOC) were 43.15 parts per billion (ppb), of which the alkanes, alkenes, aromatics, halocarbons, and oxygenated VOCs respectively accounted for 49%, 12%, 11%, 14%, and 14%. Although the mixing ratios of alkenes were comparatively low, they played a dominant role in the LOH and OFP, especially ethene (0.55 s-1, 7%; 27.11 µg/m3, 10%) and 1,3-butadiene (0.74 s-1, 10%; 12.52 µg/m3, 5%). The vehicle-related source which emitted considerable alkenes ranked as the foremost contributing factor (21%). Biomass burning was probably influenced by other cities in the western and southern Henan and other provinces, Shandong and Hebei.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , China , Ozônio/análise , Alcenos/análise , Material Particulado , Emissões de Veículos/análise
8.
Sci Total Environ ; 889: 164098, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201815

RESUMO

Volatile organic compounds (VOCs) are significant pollutants generated during the processes of petroleum refining and chemical production. Aromatic hydrocarbons, in particular, pose a great risk to human health. Nevertheless, unorganized emissions of VOCs from typical aromatics units remain poorly studied and reported. Therefore, it is vital to achieve precise control over aromatic hydrocarbons while managing VOCs. In this study, two typical aromatics production devices in petrochemical enterprises, namely aromatics extraction devices and ethylbenzene devices, were selected. The fugitive emissions of VOCs from the process pipelines in the units were investigated. Samples were collected and transferred using the EPA bag sampling method and HJ 644 and analyzed using gas chromatography-mass spectrometry. The results indicated that a total of 112 VOCs were emitted during the six rounds of sampling in the two types of devices, with alkanes (61 %), aromatic hydrocarbons (24 %), and olefins (8 %) being the primary types of VOCs emitted. The results also revealed the unorganized emissions characteristic substances of VOCs in the two types of devices, with slight differences in the types of VOCs emitted. The study found significant differences in the detection concentrations of aromatic hydrocarbons and olefins, as well as the types of detected chlorinated organic compounds (CVOCs), between the two sets of aromatics extraction units in distinct regions. These differences were closely related to the processes and leakages in the devices and can be effectively controlled by enhancing leak detection and repair (LDAR) and other measures. This article offers guidance for compiling VOCs emission inventories and improving the management of VOCs emissions in petrochemical enterprises by refining the source spectrum at the device scale. The findings are significant for analyzing VOCs unorganized emission factors and promoting safe production in enterprises.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Alcanos/análise , Alcenos/análise , China
9.
Environ Pollut ; 326: 121465, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958651

RESUMO

Peroxyacetyl nitrate (PAN) is one of the critical secondary pollutants in photochemical smog. This study investigated the relationship between PAN and PAN precursors with the Regional Atmospheric Chemical Mechanism version 2 model in six episodes recorded in Zhengzhou. In all episodes, peroxyacetyl radical (PA) was primarily produced by acetaldehyde oxidation, with more than 70% contributions. In photochemical episodes and photochemical-haze co-occurring episodes (combined episodes), methylglyoxal secondarily contributes 8.1%-10.6% to PA while in haze pollution, the propagation of other radicals to PA is the second most important source (12.0%-19.1%). Among anthropogenic non-methane hydrocarbons, alkene restricted PAN formation as first-generation precursors, with the relative incremental reactivity of PAN (RIRPAN) more than 0.6 during three-type episodes. Nitrous acid (HONO) also played important role in PAN formation. Especially during photochemical episodes, RIRPAN(HONO) reached 0.79, which was comparable to the RIRPAN value of alkene. Through sensitivity analysis of the relative formation of PAN to O3 (the amount of PAN generated when 100 ppb O3 formed), HONO was identified as the key precursor of PAN in haze pollution by promoting the oxidation of NMHC, while alkene predominated the relative formation of PAN to O3 in photochemical and combined pollution through producing acetaldehyde. The sensitivity of PAN to HONO is obviously enhanced with higher NOx/VOC ratios during photochemical and combined pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Alcenos/análise , Ácido Nitroso , Estações do Ano , Acetaldeído/análise , Ozônio/análise
10.
Huan Jing Ke Xue ; 44(1): 66-74, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635796

RESUMO

Based on the sounding data of VOCs in the lower troposphere (0-1000 m) in the northern suburb of Nanjing in the autumn of 2020, the vertical profile distribution, diurnal variation, and photochemical reactivity of VOCs in this area were analyzed. The results showed that the volume fraction of VOCs decreased with the increase in height (72.1×10-9±28.1×10-9-56.4×10-9±24.8×10-9). Alkanes at all heights accounted for the largest proportion (68%-75%), followed by aromatics (10%-12%), halohydrocarbons (10%-11%), alkenes (3%-7%), and acetylene (2%). The diurnal variation of the boundary layer had a great influence on the VOCs profile. The lower boundary layer in the morning and evening caused the volume fraction of VOCs to accumulate near the ground and lower in the upper layer. The vertical distribution of VOCs was more uniform in the afternoon. In the morning, the volume fraction proportion of alkenes (alkanes) with strong (weak) photochemical reactivity decreased (increased) with the increase in height, indicating that the photochemical aging of VOCs in the upper layer was significant. In the afternoon, the vertical distribution of VOCs volume fraction and OFP in the lower troposphere were more uniform. Affected by the surrounding air masses with different sources, the volume fraction and component proportion of VOCs at each height were significantly different. The alkanes in rural air masses were vertically evenly distributed, and the proportion increased gradually with the height. The vertical negative gradient of VOCs volume fraction in the urban air mass was the largest, the volume fraction of VOCs near the ground was high, and it was rich in aromatics. The proportion of aromatics increased with the increase in VOCs volume fraction between 200-400 m height of industrial air mass. The near-surface VOCs volume fraction of the highway traffic air mass was high, and alkanes accounted for the largest proportion.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Alcenos/análise , Alcanos/análise , China , Ozônio/análise
11.
J Environ Sci (China) ; 124: 723-734, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182177

RESUMO

Understanding the emission sources of volatile organic compounds (VOCs) is critical for air pollution mitigation. Continuous measurements of atmospheric VOCs were conducted from January to February in Hangzhou in 2021. The average measured concentration of total VOCs (TVOCs) was 38.2 ± 20.9 ppb, > 42% lower than that reported by previous studies at the urban center in Hangzhou. The VOC concentrations and proportions were similar between weekdays and weekends. During the long holidays of the Spring Festival in China, the concentrations of TVOCs were ∼50% lower than those during the regular days, but their profiles showed no significant difference (p > 0.05). Further, we deduced that aromatics and alkenes were the most crucial chemicals promoting the formation of O3 and secondary organic aerosol (SOA) in Hangzhou. According to interspecies correlations, combustion processes and solvent use were inferred as major VOC emission sources. This study provides implications for air quality improvements before and during the upcoming Asian Games that will be hosted in Hangzhou in 2022.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Alcenos/análise , China , Monitoramento Ambiental , Ozônio/análise , Solventes , Compostos Orgânicos Voláteis/análise
12.
J Environ Sci (China) ; 124: 794-805, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182184

RESUMO

Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China, in contrast to the fact that an increase in emissions of non-methane hydrocarbons (NMHCs) has been reported. This study employed seven years continuous NMHCs measurements and the related activities data of Shanghai, a megacity in China, to explore evolution of emissions and effectiveness of air pollution control measures. The mixing ratio of NMHCs showed no statistical interannual changes, of which their compositions exhibited marked changes. This resulted in a decreasing trend of ozone formation potential by 3.8%/year (p < 0.05, the same below), which should be beneficial to ozone pollution mitigation as its production in Shanghai is in the NMHCs-limited regime. Observed alkanes, aromatics and acetylene changed by +3.7%/year, -5.9%/year and -7.4%/year, respectively, and alkenes showed no apparent trend. NMHCs sources were apportioned by a positive matrix factorization model. Accordingly, vehicular emissions (-5.9%/year) and petrochemical industry emissions (-7.1%/year) decreased significantly, but the decrease slowed down; significant reduction in solvent usage (-9.0%/year) appeared after 2010; however, emissions of natural gas (+12.6%/year) and fuel evaporation (with an increasing fraction) became more important. The inconsistency between observations and inventories was found in interannual trend and speciation as well as source contributions, emphasizing the need for further validation in NMHCs emission inventory. Our study confirms the effectiveness of measures targeting mobile and centralized emissions from industrial sources and reveals a need focusing on fugitive emissions, which provided new insights into future air policies in polluted region.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Alcanos/análise , Alcenos/análise , Alcinos , China , Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Metano , Gás Natural , Ozônio/química , Solventes , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
13.
Sci Total Environ ; 857(Pt 3): 159674, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36283529

RESUMO

Continuous measurement of 98 volatile organic compounds (VOCs) was conducted during 2017-2019 at a regional background site (Shanxi) located at northeast of Zhejiang Province, YRD region, China. The average concentration of total VOCs (TVOCs) was 25.4 ± 18.4 ppbv, and an increasing trend (+12.2 %) was observed. Alkanes were the most abundant VOC group among all seasons, accounting for 43.5 % of TVOCs. Oxygenated VOCs (OVOCs), aromatics, halides and alkenes contributed 15.9 %, 15.7 %, 11.7 % and 10.3 % of TVOCs concentration, respectively. Biogenic VOCs (BVOCs) and OVOCs showed distinguished diurnal cycle from primary anthropogenic VOCs. Photochemical reactivity analysis based on ozone formation potential (OFP) and OH loss rate (LOH) indicated that aromatics and alkenes were the most significant contributor, respectively. Toluene, xylene (m/p- and o-), ethene and propene were the largest contributor of annual OFP, with the mean OFP being 33.8 ± 44.3 µg·m-3, 31.9 ± 32.1 µg·m-3, 9.29 ± 11.4 µg·m-3, 22.1 ± 21.3 µg·m-3 and 12.8 ± 19.5 µg·m-3, respectively. Seven sources were identified with positive matrix factorization (PMF): petrochemical industry (13.8 %), biogenic emission (1.0 %), solvent usage-toluene (16.9 %), vehicular exhaust (43.8 %), Integrated circuits industry (3.8 %), solvent usage-C8 aromatics (10.9 %), and gasoline evaporation (9.8 %). Vehicular exhaust was the most significant source (43.8 %) during the whole measurement period. Solvent usage, petrochemical industry, and gasoline evaporation showed high temperature dependency. The integrated contribution of solvent usage and industrial processes were higher than vehicular exhaust during hot months. These sources also have higher chemical reactivities and can contribute more on O3 formation. Our results are helpful on determining the control strategies aiming at alleviating O3 pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Solventes/análise , Gasolina/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Ozônio/análise , Alcenos/análise , China , Tolueno/análise
14.
Front Public Health ; 11: 1321138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322362

RESUMO

Acetamiprid (ACE) and imidacloprid (IMI) are insecticides of global importance and are used as spray and watering agents for ornamental plants to control biting and sucking insects or as topical medications on pets to remove and control fleas. Human biomonitoring data on ACE and IMI exposures when applying these products are limited. We investigated exposures to ACE and IMI in male volunteers after the domestic application of either an ACE-containing agent or an IMI-containing spot-on medication. Complete and consecutive urine samples were collected for up to 56 h after application. Urine samples were analyzed for ACE, IMI, and their respective metabolites (N-desmethyl-ACE, IMI-olefin, and sum of 4-/5-hydroxy-IMI) by liquid chromatography-tandem mass spectrometry. Fairly uniform concentrations of N-desmethyl-ACE could be observed before and after orchid treatment, so that an ACE exposure associated with orchid treatment can most likely be excluded. In contrast, after the application of the IMI-containing medication, elevated concentrations of IMI, 4-/5-hydroxy-IMI, and IMI-olefin were quantified in urine samples post-20 h with maximum concentrations of 3.1, 14.9, and 8.0 µg/g creatinine, respectively, well above general background levels. Nevertheless, the IMI intake (10.6 µg/kg bw), calculated from the excreted amounts, was around five times below the current European acceptable daily intake. Based on the case results here, household exposures to ACE and IMI after spray treatment of ornamental plants and anti-flea treatment of dogs can be regarded as low and safe. However, people regularly applying neonicotinoid-containing formulations, such as professional gardeners and employees in animal shelters, should be studied in more detail.


Assuntos
Monitoramento Biológico , Inseticidas , Nitrocompostos , Humanos , Animais , Cães , Neonicotinoides/urina , Inseticidas/urina , Alcenos/análise
15.
Anal Chem ; 94(41): 14195-14204, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36214478

RESUMO

Although many types of halogenated compounds are known to bioaccumulate in humans, few are routinely biomonitored and many have remained uncharacterized in human exposome studies due to a lack of high-sensitivity and high-resolution analytical methods. In this study, we discovered tetraphenylphosphonium chloride (Ph4PCl, 10 µM) as a simple additive to the mobile phase, which enhanced the ionizations of polyhalogenated alkyl compounds (such as organochlorinated pesticides [OCPs], chlorinated paraffins [CPs], dechlorane plus [DPs], and some brominated flame retardants [BFRs]) in the form [M + Cl]- and boosted mass spectrometry responses by an average of 1-3 orders of magnitude at a resolution of 140,000. Ph4PCl-enhanced ionization coupled with a halogenation-guided screening process was used to establish a sensitive and non-targeted method that required only single-step sample preparation and identified Cl- and/or bromine-containing alkyl compounds. The method enabled the identification of ∼700 polyhalogenated compounds from 200 µL of human serum, 240 of which were known compounds: 33 short-chain CPs, 52 median-chain CPs, 97 long-chain CPs, 22 very short-chain CPs (vSCCPs), 19 OCPs, 13 DPs, and 4 BFRs. We also identified 325 emerging contaminants (34 unsaturated CPs, 285 chlorinated fatty acid methyl esters [CFAMEs], and 6 chloro-bromo alkenes) and 130 new contaminants (114 oxygen-containing CPs, 2 hexachlorocyclohexane structural analogs, and 11 amino-containing and 3 nitrate-containing chlorinated compounds). The full scan results highlighted the dominance of CPs, CFAMEs, vSCCPs, and dichlorodiphenyltrichloroethanes in the serum samples. Ph4PCl-enhanced ionization enabled the sensitive and non-targeted identifications of polyhalogenated compounds in small volumes of biological fluid.


Assuntos
Retardadores de Chama , Hidrocarbonetos Clorados , Praguicidas , Alcenos/análise , Bromo/análise , Monitoramento Ambiental/métodos , Ácidos Graxos , Retardadores de Chama/análise , Hexaclorocicloexano/análise , Humanos , Hidrocarbonetos Clorados/análise , Espectrometria de Massas/métodos , Nitratos/análise , Oniocompostos , Compostos Organofosforados , Oxigênio/análise , Parafina/análise , Parafina/química , Praguicidas/análise
16.
Huan Jing Ke Xue ; 43(10): 4357-4366, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224122

RESUMO

Volatile organic compound (VOCs) emissions from poultry and livestock facilities affect the surrounding environmental quality and human health. However, VOCs emissions from broiler houses have been less characterized, and studies of related dominant odorants, carcinogenic risk, and ozone formation potential are still lacking. To fill this research gap, VOCs pollutants emitted from a broiler house were investigated in this study. The VOCs emission characteristics of the broiler house during three different periods of broiler growth (early, middle, and later) were analyzed using gas chromatography-mass spectrometry. The results showed that 77 types of VOCs were detected, including 16 types of halogenated hydrocarbons, 21 types of alkanes, 5 types of olefins, 12 types of aromatic hydrocarbons, 15 types of oxygenated volatile organic compounds (OVOCs), and 8 types of sulfides. During the entire 42-day growth period, the concentrations of halogenated hydrocarbons, alkanes, olefin, aromatic hydrocarbons, and OVOCs in the broiler house showed few changes. However, with the growth of broilers, the intake of sulfur-containing amino acids and the fecal emission coefficient increased, resulting in the gradual conversion of the VOCs to sulfide. Therefore, emissions of sulfur-containing VOCs increased in the early and middle growth periods. Moreover, the increase in ventilation in the house during the later growth period resulted in a decrease in the sulfur-containing VOCs concentrations. The dominant odorants in the broiler house were naphthalene, ethyl acetate, acetaldehyde, carbon disulfide, dimethyl disulfide, methanethiol, methanethiol, and thiophene. Methanethiol had the highest odorous values, ranging from 2172.4 to 19090.9. Meanwhile, there were acceptable levels of carcinogenic risk in the early and middle growth periods, with a lifetime cancer risk (LCR) of 7.7×10-6 and 4.5×10-6, respectively. The average ozone formation potential (OFP) was (1458.9±787.4) µg·m-3. The results of this study can provide a scientific basis for the monitoring of malodorous substances and formulation of emission reduction strategies in broiler production.


Assuntos
Poluentes Atmosféricos , Dissulfeto de Carbono , Hidrocarbonetos Aromáticos , Hidrocarbonetos Halogenados , Ozônio , Compostos Orgânicos Voláteis , Acetaldeído/análise , Poluentes Atmosféricos/análise , Alcanos/análise , Alcenos/análise , Aminoácidos , Animais , Dissulfeto de Carbono/análise , Galinhas , China , Monitoramento Ambiental , Humanos , Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos Halogenados/análise , Naftalenos , Ozônio/análise , Compostos de Sulfidrila , Enxofre/análise , Tiofenos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
17.
Anal Chem ; 94(40): 13777-13784, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36169133

RESUMO

Chlorinated paraffins (CPs) are complex mixtures consisting of various C homologues (nC ≈ 10-30) and Cl homologues (nCl ≈ 2-20). Technical CP mixtures are produced on a large scale (>106 t/y) and are widely used such as plasticizers in plastic and coolants in metalwork. Since 2017, short-chain CPs (C10-C13) are classified as persistent organic pollutants (POPs) by the Stockholm Convention but longer-chain CPs are not regulated. Analysis of technical CP mixtures is challenging because they consist of hundreds of homologues and millions of constitutional isomers and stereoisomers. Furthermore, such mixtures can also contain byproducts and transformation products such as chlorinated olefins (COs). We applied a liquid-chromatography method coupled to an atmospheric pressure chemical ionization technique with a high-resolution mass detector (LC-APCI-Orbitrap-MS) to study CP and CO homologues in two plastic materials. Respective mass spectra can contain up to 23,000 signals from 1320 different C-Cl homologue classes. The R-based automated spectra evaluation routine (RASER) was developed to efficiently search for characteristic ions in these complex mass spectra. With it, the time needed to evaluate such spectra was reduced from weeks to hours, compared to manual data evaluation. Unique sets of homologue distributions could be obtained from the two plastic materials. CPs were found together with their transformation products, the chlorinated mono-olefins (COs), di-olefins (CdiOs), and tri-olefins (CtriOs) in both plastic materials. Based on these examples, it can be shown that RASER is an efficient and selective tool for evaluating high-resolution mass spectra of CP mixtures containing hundreds of homologues.


Assuntos
Hidrocarbonetos Clorados , Parafina , Alcenos/análise , China , Misturas Complexas/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Parafina/análise , Parafina/química , Poluentes Orgânicos Persistentes , Plastificantes/análise , Plásticos
18.
Huan Jing Ke Xue ; 43(9): 4497-4505, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096590

RESUMO

To investigate the characteristics and sources of atmospheric volatile organic compounds (VOCs) in a typical industrial zone in Dongguan, 56 VOCs species were continuously measured in Houjie Town of Dongguan in summer of 2020. In addition, mass concentrations of O3, NOx, and CO and meteorological data were synchronously collected. Then, characteristics of total VOCs and major species, the contributions of major VOCs species to ozone formation potential (OFP), and source apportionment of VOCs under the different ozone concentrations were discussed. The mean mixing ratio of VOCs was 53.1×10-9 including aromatics (24.7×10-9), alkanes (23.7×10-9), alkenes (3.9×10-9), and alkynes (0.7×10-9). The mean mixing ratios of aromatics, alkanes, alkenes, and alkynes increased approximately 10%, 43%, 38%, and 98% during the period of ozone pollution, respectively, compared with those during the period of non-ozone pollution. Aromatics contributed the most to OFP during the periods of both ozone pollution and non-ozone pollution, followed by alkanes, alkenes, and alkynes. Solvent sources, liquefied petroleum gas (LPG) leakage, fossil fuel combustion, and hydrocarbon volatilization were resolved using the PMF model, which accounted for 60%±20%, 16%±11%, 15%±11%, and 9%±6% of total VOCs, respectively. During the period of ozone pollution, the contribution of solvent sources to the total VOCs decreased to 44%, whereas that of LPG leakage and hydrocarbon volatilization increased to 21% and 16%, respectively.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Alcanos/análise , Alcenos/análise , Alcinos , Monitoramento Ambiental , Hidrocarbonetos , Ozônio/análise , Solventes , Compostos Orgânicos Voláteis/análise
19.
J Chromatogr A ; 1682: 463523, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36179602

RESUMO

Refined edible oils and fats are known to contain olefins resisting the typical epoxidation used for the sample preparation of mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH). These olefins can be misinterpreted as MOAH and are therefore an important reason for inconsistent results between laboratories. Collaborative trials confirm this assumption for low MOAH contents near the quantitation limits regularly. In the scope of this work, a new epoxidation approach was developed. Persistent olefins in refined oils could be successfully epoxidized with performic acid. The reaction kinetics was investigated using model substances for biogenic olefins and MOAH. It was rationalized why certain olefins resist epoxidation and which MOAH can potentially get lost. A prominent peak cluster in the MOAH fraction of refined palm oils could be identified by means of GC-MS and explained why it cannot be epoxidized. Based upon this, an automated and streamlined workflow for sample preparation and analysis was composed tackling major problems identified in previously published methods. Optimized and miniaturized saponification, extraction, epoxidation, and enrichment paired with online LC-GC-FID led to a robust method that was tested and validated for edible oils and fats (RSDR < 7% for MOSH and MOAH at values of 14.9 and 2.1 mg/kg, respectively). Due to increased sample amount and minimized blank values, quantitation limits below 1 mg/kg for MOSH and MOAH were achieved. The trueness of the method was verified by analyzing collaborative trial samples.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Alcenos/análise , Gorduras , Contaminação de Alimentos/análise , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Óleos de Plantas/análise , Fluxo de Trabalho
20.
Environ Sci Technol ; 56(17): 12452-12459, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35976999

RESUMO

A semiquantitative high-resolution mass spectrometry method was developed and applied to assess the occurrence of bromo-/chloro paraffins (BCPs) and olefins (BCOs) in the environment. More than 400 possible BCPs and BCO congener groups were detected in dust, air, and sewage sludge samples collected from Australia. Median chain analytes with the number of halogen atoms <7 (CnHmClxBry, 14 ≤ n ≤ 17, x + y < 7) prevailed in the dust and sludge samples, while short chain analytes (CnHmClxBry, 10 ≤ n ≤ 13, x + y < 7) predominated the air samples. The estimated concentrations of ∑BCPs and ∑BCOs in dust and sludge were approximately 20% that of the chlorinated paraffins (CPs) present, with the median concentrations of 5.4 µg/g (dust) and 0.18 µg/g (sludge) for ∑BCPs and 22 µg/g (in dust) and 0.50 µg/g (sludge) for BCOs. In the air samples, the concentrations of BCPs (0.020 pg/m3) and BCOs (0.032 pg/m3) were 3-4 orders of magnitudes lower than the concentrations of CPs (790 pg/m3). Significant correlations (P < 0.001) were found between the concentration of CPs, BCPs, and BCOs in all the matrices.


Assuntos
Hidrocarbonetos Clorados , Parafina , Alcenos/análise , Austrália , China , Poeira/análise , Monitoramento Ambiental , Parafina/análise , Esgotos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...